ตรรกศาสตร์ (Mathematical Logic) พร้อมตัวอย่าง และเฉลยข้อสอบตรรกศาสตร์เบื้องต้น

ฝากข่าว โดย :

กระบวนการทางวิทยาศาสตร์มีรูปแบบการค้นหาความรู้ที่เป็นเหตุเป็นผล ในทางกฏหมายก็ใช้การอ้างเหตุผลการตัดสิน พิพากษา ในเศรษฐศาสตร์และสังคม ต่างก็โน้มน้าวและสร้างความน่าเชื่อถือด้วยกระบวนการที่เป็นเหตุเป็นผล ในทางคณิตศาสตร์ อาศัยเพียงโครงสร้างคณิตศาสตร์ ตรรกศาสตร์และการพิสูจน์ เพื่อหาความจริงพร้อมตรวจสอบความจริง ซึ่งตรรกศาสตร์ เป็นวิชาแขนงหนึ่งที่มีการศึกษาและพัฒนามาตั้งแต่สมัยกรีกโบราณตรรกศาสตร์

คำว่า “ตรรกศาสตร์” มาจากภาษาสันสกฤตว่า “ตรฺก” (หมายถึง การตรึกตรอง หรือความคิด) อะริสโตเติล (Aristotle) เป็นผู้หนึ่งที่ได้เขียนตำราทางตรรกศาสตร์ที่เป็นระบบขึ้นเป็นครั้งแรก ซึ่งมีผลต่อความคิดทางปรัชญา ทางวิทยาศาสตร์ และทางศาสนาเป็นอย่างมาก สิ่งที่เราจะได้เรียนกันในระดับชั้น ม.4 ถือว่าเป็นพื้นฐานของวิชาตรรกศาสตร์

ตรรกศาสตร์ หมายถึง

ตรรกศาสตร์ (Mathematical Logic) เป็นวิชาที่ว่าด้วยกฎเกณฑ์และเหตุผล การได้มาของผลภายใต้กฎเกณฑ์ที่กำหนดถือเป็นสาระสำคัญ ข้อความหรือการให้เหตุผลในชีวิตประจำวันสามารถสร้างเป็นรูปแบบที่ชัดเจนจน ใช้ประโยชน์ในการสรุปความ ความสมเหตุสมผลเป็นที่ยอมรับกันอย่างกว้างขวาง ตรรกศาสตร์เป็นแม่บทของคณิตศาสตร์แขนงต่าง ๆ และการประยุกต์

ประพจน์ (Propositions/Statement)

สิ่งแรกที่ต้องรู้จักในเรื่อง ตรรกศาสตร์คือ ประพจน์ ข้อความหรือประโยคที่มีค่าความจริง(T)หรือเท็จ(F) อย่างใดอย่างหนึ่ง ส่วนข้อความรูป คำสั่ง คำขอร้อง คำอุทาน คำปฏิเสธ ซึ่งไม่อยู่ในรูปของประโยคบอกเล่า จะเป็นข้อความที่ไม่เป็นประพจน์ สำหรับข้อความบอกเล่าแต่มีตัวแปรอยู่ด้วย ไม่สามารถบอกว่าเป็นจริงหรือเท็จจะไม่เป็นประพจน์ เรียกว่าประโยคเปิด

ประโยคที่มีค่าความจริงไม่แน่นอน หรือไม่อาจระบุได้ว่ามีค่าความจริงเป็นจริงหรือเป็นเท็จได้ ไม่เป็นประพจน์

การเชื่อมประพจน์

โดยปกติเมื่อกล่าวถึงข้อความหรือประโยคนั้นมักจะมีกริยามากกว่าหนึ่งตัว แสดงว่าได้นำประโยคมาเชื่อมกัน มากกว่าหนึ่งประโยค ดังนั้นถ้านำประพจน์มาเชื่อมกัน ก็จะได้ประพจน์ใหม่ ซึ่งสามารถบอกได้ว่าเป็นจริงหรือเป็นเท็จ ตัวเชื่อมประพจน์มีอยู่ 5 ตัว และตัวเชื่อมที่ใช้กันมากในตรรกศาสตร์คือ และ หรือถ้า…แล้ว ก็ต่อเมื่อ ไม่

  • ตัวเชื่อมประพจน์ “และ”
    การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “และ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงเป็นจริง (T) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ (F)
  • ตัวเชื่อมประพจน์ “หรือ”
    การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “หรือ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∨q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงเป็นเท็จ (F) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง (T)
  • ตัวเชื่อมประพจน์ “ถ้า…แล้ว”
    การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ถ้า…แล้ว” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p เป็นจริง (T) และ q เป็นเท็จ (F) นอกนั้นมีค่าความจริงเป็นจริง (T)
  • ตัวเชื่อมประพจน์ “ก็ต่อเมื่อ”
    การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ “ก็ต่อเมื่อ” สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ⇔ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงตรงข้ามกัน

นิเสธของประพจน์ “ไม่”
นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p

ประพจน์ที่สมมูลกัน

ประพจน์ 2 ประพจน์จะสมมูลกัน ก็ต่อเมื่อ ประพจน์ทั้งสองมีค่าความจริงเหมือนกัน ทุกกรณีของค่าความจริงของประพจน์ย่อย

การทดสอบว่าประพจน์ 2 ประพจน์ สมมูลกัน ทำได้ 2 วิธี คือ

สร้างตารางแจกแจงค่าความจริง ค่าความจริงต้องตรงกันทุกกรณี
โดยการใช้หลักความจริงและประพจน์ที่สมมูลกันแบบง่ยๆที่ควรจำ เพื่อแปลงรูปประพจน์ไปเป็นแบบเดียวกัน
ตัวอย่างประพจน์ที่สมมูลกันที่ควรทราบ มีดังนี้
p ∧ q สมมูลกับ q ∧ p

p ∨ q สมมูลกับ q ∨ p

(p ∧ q) ∧ r สมมูลกับ p ∧ (q ∧ r)

(p ∨ q) ∨ r สมมูลกับ p ∨ (q ∨ r)

p ∧ (q ∨ r) สมมูลกับ (p ∧ q) ∨ ( p ∧ r)

p ∨ (q ∧ r) สมมูลกับ (p ∨ q) ∧ ( p ∨ r)

p → q สมมูลกับ ~p ∨ q

p → q สมมูลกับ ~q → ~p

p ⇔ q สมมูลกับ (p → q) ∧ (q → p)

ประพจน์ที่เป็นนิเสธกัน

ประพจน์ 2 ประพจน์เป็นนิเสธกัน ก็ต่อเมื่อ ประพจน์ทั้งสองมีค่าความจริงตรงข้ามกันทุกกรณีของค่าความจริงของประพจน์ย่อย

ตัวอย่างประพจน์ที่เป็นนิเสธกันที่ควรทราบ มีดังนี้
~(p ∧ q) สมมูลกับ ~p ∨ ~q

~(p ∨ q) สมมูลกับ ~p ∧ ~q

~(p → q) สมมูลกับ p ∧ ~q

~(p ⇔ q) สมมูลกับ (p ⇔ ~q) ∨(q ⇔ ~p)

~(p ⇔ q) สมมูลกับ (p ∧ ~q) ∨ ( q ∧~p)

สัจนิรันดร์

สัจจะ แปลว่าจริง ส่วนนิรันดร์ แปลว่าตลอดกาล ประพจน์ที่เป็นสัจนิรันดร์ คือ ประพจน์ที่มีค่าความจริงเป็นจริง ทุกกรณีของประพจน์ย่อย

ประโยคเปิด (Open Sentence)
คือข้อความที่อยู่ในรูปประโยคบอกเล่าหรือปฏิเสธ ที่มีตัวแปรและสื่อแทนค่าของตัวแปรนั้น จะได้ค่าความจริงแน่นอน หรือเป็นประพจน์ นิยมใช้สัญลักษณ์ P(x), P(x , y), Q(x , y) แทนประโยคเปิดที่มีตัวแปรระบุในวงเล็บ

ตัวบ่งปริมาณ (∀,∃)

ตัวบ่งปริมาณ เป็นตัวระบุจำนวนสมาชิกในเอกภพสัมพัทธ์ที่ทำให้ประโยคเปิดกลายเป็นประพจน์ ตัวบ่งปริมาณมี 2 ชนิด คือ

ตัวบ่งปริมาณที่กล่าวถึง “สมาชิกทุกตัวในเอกภพสัมพัทธ์” ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ “∀” อ่านว่า”สำหรับสมาชิก x ทุกตัว”
ตัวบ่งปริมาณที่กล่าวถึง “สมาชิกบางตัวในเอกภพสัมพัทธ์” ซึ่งเขียนแทนได้ด้วยสัญลักษณ์ “∃” อ่านว่า “สำหรับสมาชิก x บางตัว”
ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง

นิเสธของประพจน์ที่มีตัวบ่งปริมาณ

~∀x[P(x)] สมมูลกับ ∃x[~P(x)]

~∃x[P(x)] สมมูลกับ∀x[~P(x)]

~∀x[~P(x)] สมมูลกับ∃x[P(x)]

~∃x[~P(x)] สมมูลกับ∀x[P(x)]

การอ้างเหตุผล

การอ้างเหตุผล คือ การอ้างว่า “สำหรับเหตุการณ์ P1, P2,…, Pn ชุดหนึ่ง สามารถสรุปผลที่ตามมา C ได้” การอ้างเหตุผลนี้ ได้รับเลือกเป็นตัวแทนของ ข้อสอบในเรื่องตรรกศาสตร์ ให้เป็นข้อสอบเข้ามหาวิทยาลัย อย่าง O-Net และ PAT1 บ่อยๆ จึงเป็นเรื่องที่สำคัญมาก

การอ้างเหตุผลประกอบด้วย 2 ส่วน คือ
เหตุ หรือสิ่งที่กำหนดให้
ผล หรือสิ่งที่ตามมา
สำหรับการพิจารณาว่า การอ้างเหตุผลนั้นสมเหตุสมผลหรือไม่นั้นพิจารณาได้จากประพจน์ ( P1 ∧ P2 ∧ … Pn) → C ถ้าประพจน์ดังกล่าวมีค่าความจริงเป็นจริงเสมอ (เป็นสัจนิรันดร์) เราสามารถสรุปได้ว่าการอ้างเหตุผลดังกล่าวเป็นการอ้างที่สมเหตุสมผล
ตัวอย่างเช่น

เหตุ 1. p → q
2. p
ผล q

ข้อสอบตรรกศาสตร์เบื้องต้น

ตรรกศาสตร์ ม.4 ม.ปลาย
ตัวอย่าง : ถ้าประพจน์(p∧q)→ (p→r) มีค่าความจริงเป็นเท็จ แล้วค่าความจริงของp , q , r ตามลำดับคือ
1. T,T,T            2. T,F,F
3. T,F,T            4. T,T,F

เฉลยข้อสอบตรรกศาสตร์ ตอบ 4.